Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474928

RESUMO

Electromyography (EMG) proves invaluable myoelectric manifestation in identifying neuromuscular alterations resulting from ischemic strokes, serving as a potential marker for diagnostics of gait impairments caused by ischemia. This study aims to develop an interpretable machine learning (ML) framework capable of distinguishing between the myoelectric patterns of stroke patients and those of healthy individuals through Explainable Artificial Intelligence (XAI) techniques. The research included 48 stroke patients (average age 70.6 years, 65% male) undergoing treatment at a rehabilitation center, alongside 75 healthy adults (average age 76.3 years, 32% male) as the control group. EMG signals were recorded from wearable devices positioned on the bicep femoris and lateral gastrocnemius muscles of both lower limbs during indoor ground walking in a gait laboratory. Boosting ML techniques were deployed to identify stroke-related gait impairments using EMG gait features. Furthermore, we employed XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Anchors to interpret the role of EMG variables in the stroke-prediction models. Among the ML models assessed, the GBoost model demonstrated the highest classification performance (AUROC: 0.94) during cross-validation with the training dataset, and it also overperformed (AUROC: 0.92, accuracy: 85.26%) when evaluated using the testing EMG dataset. Through SHAP and LIME analyses, the study identified that EMG spectral features contributing to distinguishing the stroke group from the control group were associated with the right bicep femoris and lateral gastrocnemius muscles. This interpretable EMG-based stroke prediction model holds promise as an objective tool for predicting post-stroke gait impairments. Its potential application could greatly assist in managing post-stroke rehabilitation by providing reliable EMG biomarkers and address potential gait impairment in individuals recovering from ischemic stroke.


Assuntos
Compostos de Cálcio , AVC Isquêmico , Óxidos , Acidente Vascular Cerebral , Adulto , Humanos , Masculino , Idoso , Feminino , Inteligência Artificial , Eletromiografia
2.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687908

RESUMO

Electroencephalography (EEG) is a non-invasive method employed to discern human behaviors by monitoring the neurological responses during cognitive and motor tasks. Machine learning (ML) represents a promising tool for the recognition of human activities (HAR), and eXplainable artificial intelligence (XAI) can elucidate the role of EEG features in ML-based HAR models. The primary objective of this investigation is to investigate the feasibility of an EEG-based ML model for categorizing everyday activities, such as resting, motor, and cognitive tasks, and interpreting models clinically through XAI techniques to explicate the EEG features that contribute the most to different HAR states. The study involved an examination of 75 healthy individuals with no prior diagnosis of neurological disorders. EEG recordings were obtained during the resting state, as well as two motor control states (walking and working tasks), and a cognition state (reading task). Electrodes were placed in specific regions of the brain, including the frontal, central, temporal, and occipital lobes (Fz, C1, C2, T7, T8, Oz). Several ML models were trained using EEG data for activity recognition and LIME (Local Interpretable Model-Agnostic Explanations) was employed for interpreting clinically the most influential EEG spectral features in HAR models. The classification results of the HAR models, particularly the Random Forest and Gradient Boosting models, demonstrated outstanding performances in distinguishing the analyzed human activities. The ML models exhibited alignment with EEG spectral bands in the recognition of human activity, a finding supported by the XAI explanations. To sum up, incorporating eXplainable Artificial Intelligence (XAI) into Human Activity Recognition (HAR) studies may improve activity monitoring for patient recovery, motor imagery, the healthcare metaverse, and clinical virtual reality settings.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Eletroencefalografia , Atividades Humanas
3.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560227

RESUMO

State-of-the-art healthcare technologies are incorporating advanced Artificial Intelligence (AI) models, allowing for rapid and easy disease diagnosis. However, most AI models are considered "black boxes," because there is no explanation for the decisions made by these models. Users may find it challenging to comprehend and interpret the results. Explainable AI (XAI) can explain the machine learning (ML) outputs and contribution of features in disease prediction models. Electroencephalography (EEG) is a potential predictive tool for understanding cortical impairment caused by an ischemic stroke and can be utilized for acute stroke prediction, neurologic prognosis, and post-stroke treatment. This study aims to utilize ML models to classify the ischemic stroke group and the healthy control group for acute stroke prediction in active states. Moreover, XAI tools (Eli5 and LIME) were utilized to explain the behavior of the model and determine the significant features that contribute to stroke prediction models. In this work, we studied 48 patients admitted to a hospital with acute ischemic stroke and 75 healthy adults who had no history of identified other neurological illnesses. EEG was obtained within three months following the onset of ischemic stroke symptoms using frontal, central, temporal, and occipital cortical electrodes (Fz, C1, T7, Oz). EEG data were collected in an active state (walking, working, and reading tasks). In the results of the ML approach, the Adaptive Gradient Boosting models showed around 80% accuracy for the classification of the control group and the stroke group. Eli5 and LIME were utilized to explain the behavior of the stroke prediction model and interpret the model locally around the prediction. The Eli5 and LIME interpretable models emphasized the spectral delta and theta features as local contributors to stroke prediction. From the findings of this explainable AI research, it is expected that the stroke-prediction XAI model will help with post-stroke treatment and recovery, as well as help healthcare professionals, make their diagnostic decisions more explainable.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Adulto , Humanos , Inteligência Artificial , Acidente Vascular Cerebral/diagnóstico , Eletroencefalografia
4.
Sensors (Basel) ; 22(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35459064

RESUMO

Electroencephalography (EEG) is immediate and sensitive to neurological changes resulting from sleep stages and is considered a computing tool for understanding the association between neurological outcomes and sleep stages. EEG is expected to be an efficient approach for sleep stage prediction outside a highly equipped clinical setting compared with multimodal physiological signal-based polysomnography. This study aims to quantify the neurological EEG-biomarkers and predict five-class sleep stages using sleep EEG data. We investigated the three-channel EEG sleep recordings of 154 individuals (mean age of 53.8 ± 15.4 years) from the Haaglanden Medisch Centrum (HMC, The Hague, The Netherlands) open-access public dataset of PhysioNet. The power of fast-wave alpha, beta, and gamma rhythms decreases; and the power of slow-wave delta and theta oscillations gradually increases as sleep becomes deeper. Delta wave power ratios (DAR, DTR, and DTABR) may be considered biomarkers for their characteristics of attenuation in NREM sleep and subsequent increase in REM sleep. The overall accuracy of the C5.0, Neural Network, and CHAID machine-learning models are 91%, 89%, and 84%, respectively, for multi-class classification of the sleep stages. The EEG-based sleep stage prediction approach is expected to be utilized in a wearable sleep monitoring system.


Assuntos
Ritmo Gama , Fases do Sono , Adulto , Idoso , Biomarcadores , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia
5.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770304

RESUMO

Physiological signals are immediate and sensitive to neurological changes resulting from the mental workload induced by various driving environments and are considered a quantifying tool for understanding the association between neurological outcomes and driving cognitive workloads. Neurological assessment, outside of a highly-equipped clinical setting, requires an ambulatory electroencephalography (EEG) headset. This study aimed to quantify neurological biomarkers during a resting state and two different scenarios of driving states in a virtual driving environment. We investigated the neurological responses of seventeen healthy male drivers. EEG data were measured in an initial resting state, city-roadways driving state, and expressway driving state using a portable EEG headset in a driving simulator. During the experiment, the participants drove while experiencing cognitive workloads due to various driving environments, such as road traffic conditions, lane changes of surrounding vehicles, the speed limit, etc. The power of the beta and gamma bands decreased, and the power of the delta waves, theta, and frontal theta asymmetry increased in the driving state relative to the resting state. Delta-alpha ratio (DAR) and delta-theta ratio (DTR) showed a strong correlation with a resting state, city-roadways driving state, and expressway driving state. Binary machine-learning (ML) classification models showed a near-perfect accuracy between the resting state and driving state. Moderate classification performances were observed between the resting state, city-roadways state, and expressway state in multi-class classification. An EEG-based neurological state prediction approach may be utilized in an advanced driver-assistance system (ADAS).


Assuntos
Acidentes de Trânsito , Condução de Veículo , Biomarcadores , Eletroencefalografia , Humanos , Masculino , Carga de Trabalho
6.
Sensors (Basel) ; 21(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34450776

RESUMO

Electromyography (EMG) is sensitive to neuromuscular changes resulting from ischemic stroke and is considered a potential predictive tool of post-stroke gait and rehabilitation management. This study aimed to evaluate the potential myoelectric biomarkers for the classification of stroke-impaired muscular activity of the stroke patient group and the muscular activity of the control healthy adult group. We also proposed an EMG-based gait monitoring system consisting of a portable EMG device, cloud-based data processing, data analytics, and a health advisor service. This system was investigated with 48 stroke patients (mean age 70.6 years, 65% male) admitted into the emergency unit of a hospital and 75 healthy elderly volunteers (mean age 76.3 years, 32% male). EMG was recorded during walking using the portable device at two muscle positions: the bicep femoris muscle and the lateral gastrocnemius muscle of both lower limbs. The statistical result showed that the mean power frequency (MNF), median power frequency (MDF), peak power frequency (PKF), and mean power (MNP) of the stroke group differed significantly from those of the healthy control group. In the machine learning analysis, the neural network model showed the highest classification performance (precision: 88%, specificity: 89%, accuracy: 80%) using the training dataset and highest classification performance (precision: 72%, specificity: 74%, accuracy: 65%) using the testing dataset. This study will be helpful to understand stroke-impaired gait changes and decide post-stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Idoso , Biomarcadores , Eletromiografia , Feminino , Marcha , Humanos , Masculino , Músculo Esquelético , Acidente Vascular Cerebral/diagnóstico , Caminhada
7.
Brain Sci ; 11(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34356134

RESUMO

Electroencephalography (EEG) can access ischemic stroke-derived cortical impairment and is believed to be a prospective predictive method for acute stroke prognostics, neurological outcome, and post-stroke rehabilitation management. This study aims to quantify EEG features to understand task-induced neurological declines due to stroke and evaluate the biomarkers to distinguish the ischemic stroke group and the healthy adult group. We investigated forty-eight stroke patients (average age 72.2 years, 62% male) admitted to the rehabilitation center and seventy-five healthy adults (average age 77 years, 31% male) with no history of known neurological diseases. EEG was recorded through frontal, central, temporal, and occipital cortical electrodes (Fz, C1, C2, T7, T8, Oz) using wireless EEG devices and a newly developed data acquisition platform within three months after the appearance of symptoms of ischemic stroke (clinically confirmed). Continuous EEG data were recorded during the consecutive resting, motor (walking and working activities), and cognitive reading tasks. The statistical results showed that alpha, theta, and delta activities are biomarkers classifying the stroke patients and the healthy adults in the motor and cognitive states. DAR and DTR of the stroke group differed significantly from those of the healthy control group during the resting, motor, and cognitive tasks. Using the machine-learning approach, the C5.0 model showed 78% accuracy for the resting state, 89% accuracy in the functional motor walking condition, 84% accuracy in the working condition, and 85% accuracy in the cognitive reading state for classification the stroke group and the control group. This study is expected to be helpful for post-stroke treatment and post-stroke recovery.

8.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800415

RESUMO

Physiological signals are immediate and sensitive to neural and cardiovascular change resulting from brain stimulation, and are considered as a quantifying tool with which to evaluate the association between brain stimulation and cognitive performance. Brain stimulation outside a highly equipped, clinical setting requires the use of a low-cost, ambulatory miniature system. The purpose of this double-blind, randomized, sham-controlled study is to quantify the physiological biomarkers of the neural and cardiovascular systems induced by a microwave brain stimulation (MBS) device. We investigated the effect of an active MBS and a sham device on the cardiovascular and neurological responses of ten volunteers (mean age 26.33 years, 70% male). Electroencephalography (EEG) and electrocardiography (ECG) were recorded in the initial resting-state, intermediate state, and the final state at half-hour intervals using a portable sensing device. During the experiment, the participants were engaged in a cognitive workload. In the active MBS group, the power of high-alpha, high-beta, and low-beta bands in the EEG increased, and the power of low-alpha and theta waves decreased, relative to the sham group. RR Interval and QRS interval showed a significant association with MBS stimulation. Heart rate variability features showed no significant difference between the two groups. A wearable MBS modality may be feasible for use in biomedical research; the MBS can modulate the neurological and cardiovascular responses to cognitive workload.


Assuntos
Eletroencefalografia , Micro-Ondas , Adulto , Biomarcadores , Encéfalo , Feminino , Frequência Cardíaca , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...